Plant your tree of Java objects

Table of Contents

[Yo Lo [5Te] uTe] o FOR TP 3
CTC nu] a1 £ ¢ (=T o IO PP PORPPRRt 4
L AT LS S PPN 4
What iS the ODJECTIVET ouiniiiiiii et e st eee e et eeeaneansansansanseasnnsanns 4
WHEN 10 USE7 ..ttt ettt e et e et e et e e een s een e e eanseeneeaeeneaeens 5
aT=To 1811 (=10 ¢ =] o | PP RPNt 6
[20] o o] n 4] o V- SRR 6
N[0 (= PP 7

LU 7= 1= TP PP P PR PPPRPIN 7
(G LT T PR PPRR PR PPRRN 9

(Gl Lo IO PP PP PPN 9

LGl 2= T =T o ST PPPOPPI PR 9
T R eTo o [ST] a1 o] o 1] PPN TP PP R PP PP 9
FUNCIONALOVEIVIEW ..ceuiiiiiiiiii ettt ettt e e e et e rea e et e e een e eenaes 12
= (ol 070] o To1=T o) &< TR 12
INTErfACES & ClASSES .uuiirniiiiiiii ettt ettt et et e et e et e e e e e et e eaneees 12

APl Transformation ProCESS......cuuuiiiiiiiiiiiiiiiiiiiiiicii it 14
ROOT ELEMENT...ciiiiiiiiiiiiiiiiiii ittt e e e e s s eaa s eaaaeees 14
(070141 (= (=TT PP PPRR PPN 15

] (=T} od (= PPN 16
Persist ELeMENT.....ociuuiiiiiiiiiiii e 17
UPate ELEMENT. ... i ettt ee et et e ee e eaeaneansansaneannsnnanns 17
INterface MethOdS ...ccuuuiiiiiiiiiiiiiii e 17
ArChITECTUIE OVEIVIEBW...ceuiiiniieiiii ettt ettt et e et e et e et e e eea e een s eenaeeens 23
(0T340 =] W @70T 0] o Yo 1111 o] o [P 24
Behavioral CoOmMPOSITION ...uuiuii ittt ee e ee e e ereasanseneeneansenesansansens 25
Technical DetailS......cccuiiiiiiiiiiiiiiiiiiiiii e 26
CONEEXES. ot iiiiiiiiiiii et s eb e e b e e e eaas 27
PRASES ettt ettt eas 30
ELEmMENT LIfECYCLE «eneniii it re e e e e e e e e e ea e eans 30

RS E T To] o RPN 31
Specifications & ValidatioNS ... c..iuiiiiiiiiiiiiiiir et ee e ee e e eeeaeeaeanes 35

APl Transformation ProCESS....c..viiuiiiiiiiiiii e 37

Introduction
Welcome to the official documentation of the HappyTree API v2.0.0.

This document is divided into 3 parts. The first part aims to guide developers through
getting started, briefly explaining what the HappyTree API is and its purpose.
Additionally, the first code snippets are shown.

Next, this document will present a functional perspective. Here, usage, basic concepts,
contexts, and lifecycles are introduced.

Finally, we will show through architectural specifications how the HappyTree API works.
This is an in-depth approach that aims to present API details relating to structural
composition, behavior, and more technical aspects.

Getting Started

What is it?

HappyTree is a data structure APl designed for handling Java objects that have a tree-like
behavior, where an @Id attribute of an object is referenced as a @Parent attribute of its
children.

In certain circumstances there is a need to convert a list of Java objects, which could
represent a model layer in a business context, into an actual hierarchical tree structure
in memory, where objects contain their children and each child contains its own children
collection and so on.

When there is a need to organize a collection (Set/List) of objects, where each object
relates to another object of the same type through an identifier attribute, in a tree-like
manner, the HappyTree API is able to transform this structure into an actual tree
structure in memory, where each object will be wrapped into a tree node object, called
Element, and each element contains its children elements where each child contains its
own children and so on, recursively.

From this point, the API client can handle those elements within a tree, such as
adding/removing children from nodes, moving nodes to another point of the tree or
even to another tree, copying nodes to other trees, converting trees into JSON/XML, etc.

Therefore:

“HappyTree APl is a data structure API designed for the Java programming language
that consists of transforming linear structures of Java objects into a tree structure and
allowing their handling.”

What is the objective?

The HappyTree API aims to provide a way of creating new trees, creating trees from an
existing collection of objects that have tree-like behavior, as well as for handling these
trees. It provides interfaces for the API client for three primary and clear objectives:

e Handle Java objects as if they were nodes within trees to perform operations
such as copying, cutting, removing, creating, persisting/updating, etc. on those
objects.

e Transform linear data structures of Java objects that have tree-like behavior into
an actual tree.

e Create new trees from scratch.

The first purpose represents the basic operations of the trees, when the API client
desires to change the state of the nodes (officially called Element in the context of the
APl) in the trees, to move, copy, remove, create and update those nodes.

4

The second purpose is suitable for situations in which the API client needs to transform
a collection of plain objects, which have a logical tree relationship between them, into
an actual tree. Here, each element contains its collection of child elements, and each
child from this collection contains its own children recursively.

The last one allows the API client to create new trees from scratch, persisting element to
element to build the tree structure as desired.

When to use?

This is useful when the developer feels the need to handle objects that have a tree-like
behavior in their applications. There are several scenarios in which this APl can be useful,
such as:

e Handling directory structures.

e Handling organizational structures.

e Handling visual component structures.

e Handling product category structures.

e Handling comment/reply-to-comments structures.
e And many other scenarios.

For the above scenarios, when the developer already has a previous collection of objects
in which those objects are only linearly referenced by each other, this API has precisely
this purpose of transforming this linear structure into a physical tree structure. This
process is known as the API Transformation Process, and it is one of the main core
functionalities of the HappyTree API.

If, for example, the project has a collection of Java model objects representing directories
in a file system, where each directory object has an identifier attribute which is
referenced by the parent attribute from another directory object in the same collection,
then this APl can be used to transform this linear structure into an actual tree structure
in memory.

Suppose we have something like this:

//Linear tree structure.

public class Directory {
//Own ID
private Integer dirld;
//Super node reference
private Integer dirParentId;
//Simple attribute
private String dirName;

//getters and setters

But we want this:

//Recursive tree structure wrapped through the Element object.
public interface Element<Directory> {

private Object id;

private Object parentId;

private Collection<Element<Directory>> children;

//Skeleton methods.

public void addChild(Element<Directory> child);
public void removeChild(Element<Directory> child);
public void wrap(Directory directory);

public Directory unwrap();

Notice that in the first Directory class; to reference one instance to its parent, it is
necessary to have an implementation that binds the respective “dirParentld” attribute
with the “dirld” from another instance. Here, the objects are related among themselves
in a linear way, with no list of children or operations to deal with them. It is just a simple
Java POJO.

The second Element class is now the ideal way to represent a node within a tree, as each
instance of the Element class will structurally have its own children collection. Also, it
can “store” the real object from the first example, the Directory class, in other words,
this object is what is called a “wrapped object node”. Notice that one instance of the
Element now has its collection of children as well as a set of operations that allow the
API client to handle them.

Requirement

>=Java 8

Importing
To import the HappyTree API for inside of a Java project, copy one of the following codes:

Maven

<dependency>
<groupId>com.madzera</groupId>
<artifactId>happytree</artifactId>
<version>2.0.0</version>
</dependency>

Gradle

implementation 'com.madzera:happytree:2.0.0'

Note

Maven

Compared to v1.0.0, the groupld of this new version has changed:

- <groupId>com.madzera.happytree</groupId>
<artifactId>happytree</artifactId>

- <version>1.0.0</version>

+ <groupId>com.madzera</groupId>
<artifactId>happytree</artifactId>

+ <version>2.0.0</version>

Gradle

- implementation 'com.madzera.happytree:happytree:1.0.0'
+ implementation 'com.madzera:happytree:2.0.0'

Usage

To demonstrate how to use it, let’s consider a practical exercise common in several
projects: a simple menu structure. Suppose we received a ticket to adjust the system
menu where a submenu item needs to be relocated to another menu category, and all
menu items are stored in a relational database. We should have something like this:

MENU_ID MENU_LABEL MENU_PARENT_ID MENU_DESCRIPTION
105 Administration null
110 Control Panel 105
302 Users null
321 My Profile 302
322 Access Control 302

The purpose of the ticket would be to relocate the "Access Control" menu to stay within
the "Administration" menu, in other words, it would move from the “Users” menu to the
“Administration” menu.

However, becauseit is a legacy project, the development team did not take the necessary
care, and when loading this structure from the database to the respective Java Menu
objects, the development team did not physically treat this entire structure as tree
menus. Therefore, the object in question looks like this simple POJO:

public class Menu {
private Integer menuld;
private String menulLabel;
private Integer menuParentId;
private String menuDescription;

//Default constructor and getters & setters.

As each object of the class above represents a menu item, we do not have here, in terms
of object-oriented programming, a defined tree structure, but rather a structure that
matches the way it is stored in the database, that is, a relational/linear structure.

But this is not what is intended, because in addition to the structure not being physically
like a tree, some extra work will probably be necessary to implement recursive methods
and other methods to perform operations on the nodes of the menu tree. Therefore,
this would be a good situation to use the HappyTree API.

The above structure would be transformed by the HappyTree API (through the API
Transformation Process) into:

public interface Element<Menu> {
private Object id;
private Object parentId;
private Collection<Element<Menu>> children;
private Menu wrappedNode;

//Skeleton methods.

public void addChild(Element<Menu> child);
public void removeChild(Element<Menu> child);
public void wrap(Menu menu);

public Menu unwrap();

//0ther methods.

With the transformation performed, each Element object encapsulates (wraps) its
respective Menu object within itself, and each Element object is physically positioned in
the tree, thus representing a tree node.

In addition, each element can have several other elements within it as children, and each
child can have other children, and so on, recursively representing a complete tree.

After the tree is built, you can relocate the desired menu item using the interfaces
provided by the HappyTree API, without the need to implement any additional code.

To solve the ticket, it is necessary to put some Java annotations in the Menu class:

@Tree

public class Menu {
@Id
private Integer menuld;
private String menulLabel;
@Parent
private Integer menuParentId;
private String menuDescription;

//Default constructor and getters & setters

@Tree

It indicates that an object in this class can represent a node within a tree. It is useful
when there is a collection of objects that this class annotates to be converted
(transformed) automatically into nodes within a tree. This process is known as the API
Transformation Process.

@ld
Unigue and non-null identifier of the object to be transformed.

@Parent

Identifier of the parent object to which the current object will bind during
transformation.

There are some conditions for the API Transformation Process to be successful:
e The three annotations must be present in the class to be transformed.

e The value of the attribute annotated by the @Id must be mandatory, while the
attribute annotated by the @Parent can be null, or point to a non-existent parent.
This @Parent attribute is responsible for moving or not moving the object to the
root level of the tree, depending on whether it is null or not found.

e The attribute annotated by the @Id must be of the same type as the attribute
annotated by the @Parent.

From this point on, after just adding these annotations to the class attributes, we have
everything we need to transform this linear structure into a real tree structure. We now
have the base for our first code snippet.

First code snippet

To initialize the menu tree in the example above, and any other type of tree, we use a
code snippet that is quite common and will always be used at any tree initialization:

public void foo() throws TreeException {
Collection<Menu> menus = myObject.getMenuFromDatabase();
TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();
transaction.initializeSession("MyFirstHappyTree", menus);

From the code above, the tree is already built and has a session identifier named
"myFirstHappyTree". Every initialized tree (session) has a unique and non-null session
identifier. We will discuss these concepts in more detail later.

However, it remains to fulfill the objective of the ticket. Although the tree is already built,
it is still necessary to reallocate the "Access Control" menu from "Users" to
"Administration".

As we already know, through the database in the example above, the menu item with
the label "Access Control" has the @Id 322 and the menu item "Administration" has the
@I1d 105. With that in mind, below is the code to relocate the menu item:

public void foo() throws TreeException {
Collection<Menu> menus = myObject.getMenuFromDatabase();
TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();
transaction.initializeSession("MyFirstHappyTree", menus);

Element<Menu> administration = manager.getElementById(105);
Element<Menu> accessControl = manager.getElementById(322);
manager.cut(accessControl, administration);

//Alternatively, this also can be used
//manager.cut(322, 105);

Now, the ticket has been solved. However, this practical example used a collection of
objects that represent menu items from a database. Another possibility is to build the
same tree from scratch, creating it element by element until the resulting tree is ready

public void foo() throws TreeException {
final Integer admId = 105;
final Integer accessId = 322;

Menu adm = new Menu();
Menu ac = new Menu();

adm.setMenuId(admId);
adm.setMenuLabel("Administration");
ac.setMenuld(accessId);
ac.setMenuParentId(admId);
ac.setMenuLabel("Access Control");

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

transaction.initializeSession("MyFirstHappyTree", Menu.class);

Element<Menu> administration = manager.createElement(admId, null, adm);
Element<Menu> accessControl = manager.createElement(accessId, admId, ac);

administration.addChild(accessControl);

//In fact, this saves the new element within the tree
administration = manager.persistElement(administration);

10

The most important difference compared to the first example is the line
“transaction.initializeSession("MyFirstHappyTree", Menu.class);”. Here, the class type is
specified instead of a collection of Menu objects, because the tree is being built from
scratch. In this case, the API client needs to create elements one by one and, in the end,
use the “manager.persistElement(administration)” method to save the new elements.

11

Functional Overview

Basic Concepts

HappyTree APl is a Java library that helps Java developers handle data structures with
hierarchical behavior. It is a simple and small library; despite this, it is still considered an
APl because it has a set of rules and validations that are applied to the interface’s
methods provided to the API client. The HappyTree API also implements lifecycle
concepts regarding the elements that represent tree nodes, as well as in the API
Transformation Process.

Furthermore, contexts are also applied within the HappyTree API, because when the API
client obtains an element from a tree, it is obtaining a copy of that element so that it can
edit it and then update the tree.

As can be observed, there is a whole set of rules, validations, and lifecycle concepts, as
well as contexts, that define HappyTree as an API, even though it is a small Java library.

With this in mind, understanding these concepts becomes necessary before we move on
to the architectural specification of the HappyTree API. Here, these concepts will be
presented in a basic way, but they will be explored in greater depth throughout the next
chapter.

Interfaces & Classes

Interface Description

Element Represents a node within a tree.

TreeManager Responsible for providing operations to the API client.

TreeSession It is the tree. It stores all elements within the tree.

TreeTransaction | Stores sessions but it is only capable of working on one session at
a time.

HappyTree Entry point class.

TreeException Exception class of the HappyTree API.

Element

An element represents a node in a tree. It can have none or many other elements within
the tree, such as children, and each child, likewise, can have several other elements, and
so on.

In addition, each element has a unique and non-null @Id and a nullable @Parent,
representing the parent identifier which the element references. If the parent is not
found or is null, then the element will stay at the root level of the tree.

This object has a defined lifecycle, which will be explained later.

12

TreeManager

Object responsible for performing operations on trees. It is through the TreeManager
that it is possible to create, cut, copy, remove, update and persist elements over a given
tree session that was selected through a transaction.

All TreeManager operations need a transaction referencing an active session, otherwise
a TreeException will be thrown.

Therefore, all these interfaces are related in the following way:

TreeManager (invokes) -> TreeTransaction (to store) -> TreeSession (that contains) -> Element

TreeSession

A session is nothing more than a tree, containing all the elements. The session is
represented by the TreeSession interface and must contain a unique (and not null) String
identifier, considering that the API client may contain multiple sessions. A session can
have 3 states:

State Description

Activated The tree exists and can be handled.

Deactivated The tree exists and cannot be handled.

Destroyed The tree does not exist anymore.
TreeTransaction

A transaction is an object that is always linked to the TreeManager interface instance and
is responsible for managing the various sessions (trees) that the API client may have. It
is represented by the TreeTransaction interface, and its main function is to perform
management operations on sessions (initialize, deactivate, activate, and destroy).

Although it manages all API client sessions, a transaction can only work on a single
session at a time; that is, the transaction can function as a session selector by invoking
the "transaction.sessionCheckout(sessionIdentifier)"” method. The session to which the
transaction is currently pointing is known as the current session. The methods of the
TreeTransaction interface that perform operations on sessions and that do not have
parameters (session identifier parameter) are applied directly to the current session. If
the current session has not yet been selected, null is returned. It occurs in the following
methods:

e destroySession().
e activateSession().
e deactivateSession().
e currentSession().

To perform any operation on the TreeManager interface, it is mandatory that the transaction
associated with the manager has a session and that this session is active; otherwise, a
TreeException will be thrown.

13

HappyTree

Final class and not instantiable. This class is the one that provides the initial starting point
to use the HappyTree API. It is only intended to return instances of TreeManager.

TreeException

Exception class that is thrown by HappyTree API. This exception can be thrown by the
TreeManager and TreeTransaction interfaces if any rule or validation is not met.

API Transformation Process

As mentioned earlier, there are two ways to create new trees: from an existing collection
of linear objects that represent the tree nodes (whose classes have the @Tree, @Id, and
@Parent annotations); or from a tree built from scratch, where the tree is constructed
manually.

The API Transformation Process occurs in the first situation. This is precisely the act of
transforming a structure (collection) of linear objects, where the objects are related to
each other through identifiers (@Id and @Parent), into an actual tree in memory.

The APl Transformation Process is automatically triggered when
“transaction.initializeSession("My Tree Session ID", myoObjects)” is invoked, where
“myObjects” is the collection of objects to be transformed into nodes within a tree.

Root Element

When initializing a session (tree), whether through the API's Transformation Process
method or manually creating a tree from scratch, it is the sole and exclusive
responsibility of the HappyTree API to create the root element.

The root element, as the name suggests, is the first element in the tree hierarchy,
corresponding to the parent of all other elements. Being a special element that can only
be created by the HappyTree API itself, the root element is simply an element like all the
others, with its children below it.

The conceptual difference between a root element and the elements below it is that a
root element obviously does not have @Id, @Parent, or the wrapped object node.
Therefore, some operations involving the Element interface cannot be applied to the
root element, such as:

e setld().
e setParent().
e wrap().

Since the root element does not have these three properties mentioned above, the
respective getters always return null.

14

From the perspective of the TreeManager interface, some operations are not allowed
for root elements, throwing a TreeException. These operations are:

o copy().

e cut().

e removeElement().
e persistElement().

The reason for this is that it doesn't make sense to use the "manager. cut(source, target)”,
"manager. removeElement(element)" or "manager.copy(source, target)" operations for the
root elements. To copy the data from the root element, the API client can invoke
"transaction.cloneSession(from, to)" as it has the same purpose, that is, copying the
entire tree. For the "manager.persistElement(element)" method, it also doesn't make
sense to use it for the root element because this method should only be used for new
elements to be persisted within an already existing tree.

Contexts

This consists of a fundamental concept that determines the perspective from which the
API client is currently using the Element objects. These perspectives stem from the fact
that when the API client retrieves an element from the tree, it is obtaining a copy of that
element. This is as if the original tree was "mirrored" exclusively for the API client, so
that elements of this tree can be modified by the API client and subsequently
synchronized with the original tree. This synchronization is nothing more than the act of
updating the original tree according to the changes made by the API client.

There are two contexts: the Session Context and the API Client Context.

Session Context

The Session Context represents the context that stores the actual trees of the API client.
It's where the tree is actually stored, and to modify this tree, the only available way is
through the TreeManager interface, provided by the HappyTree API to the API client.
When using any method of this interface that makes a direct change to the tree, this
change will be applied immediately, without the need to explicitly update the tree by
invoking the "manager.updateELement (eLement)" method.

Imagine there's a "box" of trees, where each tree is a session. Therefore, the Session
Context corresponds precisely to this "box," and everything outside this box is outside
the Session Context.

API Client Context

This refers to everything outside the Session Context. In other words, when the API client
retrieves an element, any changes to that element will not be applied immediately. It's
necessary to synchronize the change in the original tree for it to take effect. To do this,

15

simply invoke "manager.updateELement(element)" to synchronize the element to apply the
change, or "manager.persistElement(element)" to add a new element to the tree.

Lifecycle

The HappyTree APl implements lifecycle concepts in two places: in Element objects and
in the API Transformation Process. The explanation of the APl Transformation Process
lifecycle will not be discussed here, only in the next chapter, because the implementation
of this lifecycle is not relevant to this section, considering that it is a transparent process
for the API client, and because it is an architectural concept of the APl itself.

The concept of element lifecycle is closely linked to context, as it is the context that
determines whether an element is currently within the original tree or whether it is
susceptible to being changed by the API client. Depending on the element's lifecycle
state and which method is invoked in the TreeManager interface, a TreeException may
be thrown. This occurs because some operations only allow specific element states.

There are 3 states in the lifecycle of an element:

Element Lifecycle

NOT_EXISTED

This is the state when the element is new to the tree session. For this element to be
included in the tree, it is necessary to invoke the "manager.persistElLement(element)"
method and thus pass it to the ATTACHED state. To create a new element in a tree
session, simply invoke the method "manager. createElement(objId, objParentid, obj)".

ATTACHED

This indicates that the element is synchronized with the original tree. An element is in
this state when the API Transformation Process is executed, and after invoking the
methods "manager.persistElement(element)" and "manager.updateElement(element)".

DETACHED

This occurs when the API client modifies an Element object that was previously obtained.
The API client can modify the element in such a way as to:

e Changeits @Id.

e Change its @Parent.

e Unwrap the object node from the Element object and wrap it again.
e Add and remove children.

Note: the list above does not apply to root elements.

16

Persist Element

The "manager.persistELement(element)"” method should only be called when the element
is new (NOT_EXISTED state) to the current session's tree. To persist, the element as well
as all its descendants must also be new. Otherwise, a TreeException will be thrown.

Update Element

When the API client obtains an element from the tree through the TreeManager
interface, such as by invoking the "manager.getElementById(id)" method, and then
modifies it or one of its descendants, to make the change effective it is necessary to
"commit" the changes using the "nanager.updateELement (element)"” method.

If the element or one of its descendants has a state other than ATTACHED or DETACHED
(precisely NOT_EXISTED), a TreeException will be thrown.

There is a possibility that the API client might retrieve elements but not modify them
(ATTACHED state). In this scenario, the "manager. updateELement(element)"” method doesn't
throw a TreeException but also doesn't do anything.

Interface Methods

Below are the lists of each interface and its respective methods and descriptions.

Element
Interface Description
getId() Obtains the element identifier. This identifier

is unigue within the tree session when
attached to the tree.

setId(Object id) Sets the element identifier. The change
requires updating the element to take effect.
The @Id must be unique and non-null.
getParent() Obtains the parent identifier of this element.
setParent(Object parent) Sets the parent identifier reference of this
element. If null or nonexistent, the element
will be at root level when persisted/updated.

getChildren() Obtains all child elements of the current
element. This includes all descendants
recursively.

addChildren(Element<T> child) Adds a new child element into the current

element. If the child contains children, they
will also be added.

17

addChildren(Collection<Element<T>>
children)

Adds a list of child elements to be
concatenated to the current children list.
Includes all nested children recursively.

getElementByid(Object id)

Searches within the current element for an
element according to the @Id parameter.
Returns null if not found. Search is
performed recursively.

removeChildren(Collection<Element<T>>
children)

Removes a subset of elements within this
one. All children and elements below the
hierarchy are also removed recursively.

removeChild(Element<T> child)

Removes the specified child element from
the children list. All its children and elements
below are also removed recursively.

removeChild(Object id)

Removes the element from the children list
by @Id. The element and all its children are
removed.

wrap(T object)

Encapsulates any object node within the
element, as long as it has the same class
type as other objects in the same tree
session.

unwrap ()

Returns a copy of the object node wrapped
in this element. Provides access to the
encapsulated object.

attachedTo()

Returns the TreeSession instance to which
this element belongs. An element is always
associated with a session.

lifecycle()

Returns the current lifecycle state of this
element (NOT_EXISTED, ATTACHED, or
DETACHED).

toJSON()

Converts the whole element structure into a
JSON format (minified). This includes all
children recursively.

toPrettyJSON()

Converts the whole element structure into a
well-formatted JSON string. This includes all
children recursively.

toXML()

Converts the whole element structure into
an XML string (minified). This includes all
children recursively.

toPrettyXML()

Converts the whole element structure into a
well-formatted XML string. This includes all
children recursively.

search(Predicate<Element<T>>
condition)

Searches for elements that satisfy a specific
condition within this element and its
children recursively. Returns a list of
matching elements with their hierarchical
structure preserved.

18

apply(Consumer<Element<T>> action) Applies a function to be performed on this
element and all its children recursively.
Changes are not automatically reflected and
require persist/update operations.
apply(Consumer<Element<T>> action, Applies a function to be performed on
Predicate<Element<T>> condition) . . .

elements that satisfy the specified condition
within this element's subtree. Changes
require persist/update operations.

TreeManager

Interface Description

cut(Element<T> from, Element<T> to) | Cuts the source element to inside of the
target element, whether for the same
session or not (they must have the same
class type). All children of the source
element will be cut as well. If target is null,
moves to root level.
cut(Object from, Object to) Cuts an element identified by its @Id and
moves it inside another element within the
same session. Returns null if the source
element is not found. If the target element is
null or not found, the source element is
moved to the root level.
copy(Element<T> from, Element<T> to) | Copies the source element into the target
element in another tree session. The entire
structure of the copied element will be
pasted inside the target element. Copying
within the same tree is not allowed, as it
would result in a duplicate @Id exception.
removeElement(Element<T> element) Removes the corresponding element from
the tree session and returns the removed
element. After removal, the element and all
its children will have the NOT_EXISTED state.
removeElement(Object id) Removes the element by its @Id. All children
of the found element are removed as well
and return the removed element itself.
Returns null if @Id cannot be found.
getElementById(Object id) Returns the element given its @1d in the tree
session. Returns null if the @Id is null or the
element cannot be found in the tree.
containsElement(Element<T> parent, Verifies whether the parent element
Element<T> descendant) . .

contains inside of it the descendant element
in the current session. Returns false if
elements are null or not attached.
containsElement(Object parent, Object | \/erifies whether the parent element
descendant) (identified by @Id) contains the descendant

19

element (identified by @1d) within the
current session. Returns false if either
element is not found.

containsElement(Element<?> element)

Verifies that the current tree session has the
specified element. Returns false if element is
null, not found, or not in ATTACHED state.

containsElement(Object id)

Verifies that the current tree session has the
specified element by the given @Id. Returns
false if element is not found or @Id is null.

createElement(Object id, Object
parent, T wrappedNode)

Creates an element with the @Id, parent and
the wrapped object node. Returns a new
element with the NOT_EXISTED state in
lifecycle. Must be persisted to be added to
the tree.

persistElement (Element<T> newElement)

Persists a new element into the current tree
session. The new element must have a
unique identifier and NOT_EXISTED state.
Returns a copy with ATTACHED state.

updateElement(Element<T> element)

Updates the state of the element within the
tree. Returns a copy with ATTACHED state.

getTransaction()

Obtains the TreeTransaction instance
associated with this manager. Every
operation defined in this interface needs to
check the transaction.

root()

Returns the root of the tree in the current
session. The root encompasses all other
elements and has no @Id, @Parent, or
object wrapped node.

search(Predicate<Element<T>>
condition)

Searches for elements that satisfy a specific
condition within the entire tree structure.
Returns a list of elements (including their
children) that match the condition.

apply(Consumer<Element<T>> action)

Applies a function to be performed on all
elements within the entire tree structure
(except root). Changes are automatically
reflected on the tree session.

apply(Consumer<Element<T>> action,
Predicate<Element<T>> condition)

Applies a function to be performed on
elements that satisfy a specific condition
within the entire tree structure (except root).
Changes are automatically reflected on the
tree session.

20

TreeSession

Interface Description

getSessionId() Returns the session identifier name. A
session identifier is defined when the session
is initialized and must be unique.

isActive() Verifies whether the session is active.
Returns true if the session is active (can be
handled), false if deactivated (exists in
memory but cannot be handled).

tree() Returns the entire tree session structure,
represented by the root element. From the
root element, it is possible to navigate
through all children recursively, accessing the
entire tree structure.

TreeTransaction

Interface Description

initializeSession(String identifier, | |nitializes a new empty tree session with the
Class<T> type) . . .

specified identifier. Creates an empty tree
where the API client must create elements
one by one. The session is automatically
checked out as the current session.
initializeSession(String identifier, | |njtializes a session with a specified identifier
Collection<T> nodes)

and transforms a list of linear objects (with
logical tree structure) into an actual tree
structure through the API Transformation
Process. The session is automatically
available as the current session.
destroySession(String identifier) Removes the session with the specified
identifier permanently. The tree and its
elements within this session are also
removed and cannot be retrieved.
destroySession() Removes the current session permanently.
The tree and its elements within this session
are also removed. The API client needs to
specify a new session to be checked out after
removal.
destroyAllSessions() Removes all registered sessions
permanently. The removal occurs for both
activated and deactivated sessions.
sessionCheckout(String identifier) Selects a tree session to work with . The
current session remains in the background
while the checked-out session becomes the
current session. Passing null or non-existent
identifier cancels the current session.

21

activateSession(String identifier)

Activates a session by the specified identifier.
With an active session, its elements can be
handled freely within the tree. It does not
automatically make it as the current session.

activateSession()

Activates the current session. With an active
session, its elements can be handled freely
within the tree. The current session will
always be active after invoking this method.

deactivateSession(String identifier)

Deactivates a session by the specified
identifier. The session is just disabled but not
removed. With a deactivated session, its
elements cannot be handled.

deactivateSession()

Deactivates the current session. The session
is just disabled but not removed from the list
of registered sessions. With a deactivated
session, its elements cannot be handled.

sessions()

Returns the list of all registered sessions. The
list includes both activated and deactivated
sessions.

cloneSession(String from, String to)

Replicates the tree session defined by the
“from” identifier to the session defined by
the “to” identifier. Faithfully reproduces all
elements from source tree to target tree. If
target exists, it is replaced. It does not
automatically check out the cloned session
after the cloning process ends.

cloneSession(TreeSession from, String
to)

Replicates the tree session defined by the
“from” session instance to the session
defined by the “to” identifier. Faithfully
reproduces all elements from source tree to
target tree. If target exists, it is replaced. It
does not automatically check out the cloned
session after the cloning process ends.

currentSession()

Returns the current session of the
transaction. The current session is the one
that the transaction is referring to at this
moment. Returns null if no session is
checked out.

22

Architecture Overview

Although the HappyTree API can be used with relative ease, reading this chapter is
recommended to gain a complete understanding of all aspects of the API.

A top-down approach is adopted, starting with an architectural overview and an
explanation of the structural and behavioral composition of the HappyTree API, and
concluding with the technical details.

In the image below, the architecture overview of the HappyTree APl is presented, along
with its class packages and their respective responsibilities.

EE—

com.miuey.happytree.annotation

1

com.miuey.happytree.exception

Tree Id Parent TreeException
API Client
| l
com.miuey.happytree
Exposed Interfaces O
TreeTransaction TreeManager Element TreeSession
]
com.miuey.happytree.core
HappyTree
+ createTreeMangqer() : TreeManager TreeElementCore
1

TreeTransactionCore

TreeManagerCore

~initializeSession(: void

+ destroySession(: boolean

+ destroyAllSessions(: void
+sessionCheckout() : TreeSession
+ activateSession() : boolean

+ deactivateSession() : boolean

+ sessions() : List<TreeSession=
+ cloneSession() . TreeSession

+ currentSession(y : TreeSession

+cut) : Element

+ copyl) - Element
+removeElement() : boolean

+ getElementByld(: Element
+containsElement() : boolean

+ createElement() : Element

+ persistElement() : Element

+ updateElement() : Element

+ getTransaction() : TreeTransaction
+root() : Element

+ getld() : Object

+ setld() void

+ getParenti) : Object

+ setParent) ; void

+ getChildren() : Collection=Element=
+ getElementByld() : Elernent
+ addChild() : void

+ addChildren() : void

+ removeChildrend) : void

+ removeChild() : void
+wrapp() ; void

+unwrapp() : T

TreeSessionCore

+ getSessionld() : String
+isActive() : boolean
+tree() : Element

+ attachedTof) : Tr
+ lifecyclel) : String

lan

——

API Transformation Process

1° Pre-Validation
2° Extraction

3% Initialization
4° Binding

£° Pos-Yalidation

Internal Implementation \5‘

The HappyTree API consists of several packages, but two of them can be considered
main:

e com.madzera.happytree
This is the package through which the API client can view and use the
exposed interfaces. It contains only interfaces that must be exposed as
functionalities. Therefore, everything contained in this package must be

public and accessible to the API client.

23

This package contains the following interfaces:
= Element.
= TreeSession.
= TreeTransaction.
= TreeManager.

e com.madzera.happytree.core

This package contains the actual implementations of the exposed
interfaces, in addition to implementing the Element lifecycle (discussed
later) and the phases of the APl Transformation Process. It also includes
several supporting classes used internally, such as factories, utilities and
helpers, validators, message repositories, and others.

Because it is intended for internal use only, this package should not be
visible to the API client, except for the HappyTree class, which serves as
the entry point to the API.

Below are the remaining packages.

e com.madzera.happytree.annotation
This package contains only the annotations used in the API
Transformation Process. These annotations define the identifier, the
parent, and the object's own class (the annotated class) that will be
transformed into a node by the HappyTree API. This package is public, and
the annotations provided are:

= @Tree.
= @Id.
= @Parent.

e com.madzera.happytree.exception

This package contains the TreeException class, which is thrown whenever
an error occurs. This package is public, as the API client is expected to
handle this exception.

Structural Composition

An object of type Element represents a node in a tree. A tree can only exist within a
previously initialized session (TreeSession). To initialize a session, the API client must
invoke an object that represents a session transaction, known as a TreeTransaction.

However, a transaction can only be obtained through a manager that implements the
TreeManager interface, which is provided to the API client.

24

In summary, every Element is inserted into a TreeSession, which is managed within a
TreeTransaction, and ultimately accessed through a TreeManager.

= TreeManager

= TreeTransaction

TreeSession = TreeSession = TreeSession

= Tree (Elements) = Tree (Elements) = Tree (Elements)

Behavioral Composition

The HappyTree APl allows the API client to interact with it in two distinct ways:
manipulating elements within a tree and manipulating sessions. Each session owns its
own tree, and no session can access or modify the trees of other sessions.

To enforce this isolation, a session mechanism was introduced. Within a session, each
element has a unique identifier inside the tree, and each session itself has a unique
identifier among all open sessions in a transaction.

As a result, the relationship between Element and TreeSession objects is intrinsic. The
other two objects available to the API client, TreeManager and TreeTransaction, are
responsible for manipulating Element and TreeSession objects, respectively.

While the TreeManager interface handles elements within sessions, the TreeTransaction
instance—associated with the manager—acts as a cursor, selecting the session (tree) on
which the TreeManager will operate.

The session state is a critical concern. The current session must always be active to allow
tree manipulation; this is the first validation performed by the HappyTree API. Although
multiple sessions can be active simultaneously, a TreeTransaction can operate on only
one session at a time. The desired session is selected by the API client by invoking the

“transaction.sessionCheckout(sessionIdentifier)” method.

Thus, there are two primary entities (Element and TreeSession) and two control entities
(TreeManager and TreeTransaction) responsible for managing them.

25

2° - persistElement(element)

TreeManager

) 1° - sessionCheckout("Directory Session")
TreeTransaction

v
g Component Session = Movie Category Session g Directory Session

Panel Element Drama Element

Documentary

Element Rock Element

Button Element

Grunge Element

Label Element Biography Element

In the image above, the TreeManager instance uses the transaction as a selector by first
invoking “transaction.sessionCheckout(sessionIdentifier)” before executing an
operation that directly affects the tree—represented in the image by the
“manager.persist(element)” operation.

From the moment the APl client selects a session through the
”tr’ansaction.sessionCheckout(sessionIdentifier‘)” method, all operations performed by
the TreeManager instance apply to the selected tree. If the transaction does not
reference any session, or references an inactive session, a TreeException is thrown for all
TreeManager operations.

Technical Details

Now that the main interfaces, their functionalities, their relationships, and their
structural and behavioral compositions have been presented, it is possible to explore the
technical details in greater depth.

The discussion begins with an explanation of the context, followed by a description of
the phases involved in using the HappyTree API. Once these concepts are established,
the lifecycle of Element objects is examined.

26

This initial explanation is essential for understanding why exceptions may be thrown, as
the lifecycle of an Element within the tree forms the fundamental basis for fully utilizing
the HappyTree API.

Subsequently, the session states are described, along with the specifications and
required validations performed by the HappyTree API. To conclude, the API
Transformation Process is explained.

Contexts

The HappyTree API is intended to manage object trees; however, it has no responsibility
for the changes you make to these objects, which represent the nodes in the tree.

Consider the code below:

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();
transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);

//True or False?
manager.containsElement(programFiles, winamp);

Is the return of the last line true or false?

Does the “programFiles” directory really have the “winamp” directory inside it, as a
child, in the “DirectoryTree” session?

The answer is false. Although the "programfFiles" object has the "winamp" object inside
it, this change has not yet been synchronized in the "DirectoryTree" session. As
previously stated, the HappyTree APl has no responsibility for automatically
synchronizing changes applied directly to tree objects.

When an element is retrieved from an already assembled tree, what is returned is a
clone of the element. The actual instance of the element is never returned—only clones.
Since the returned element may contain several children, they are all cloned and
therefore represent identical copies of the elements that exist within the tree session.

There are two ways to complete the code above to move the "winamp" directory into
"programFiles" within the “DirectoryTree” session:

"manager.updateElement (programFiles)"

27

Or, alternatively, by invoking the method below without applying changes directly to the
element:

"manager. cut(winamp, programfiles)"

Note: when a tree change occurs through the TreeManager interface, it is not necessary
to update the element. Every change made via TreeManager is automatically
synchronized with the tree.

Based on everything discussed so far, there are two contexts, which can be understood
as perspectives: the API client perspective and the session (the tree) perspective.
Therefore, in relation to the example above, the following applies:

e Before synchronization

= DirectoryTree Session
Pl Client Context | =Session Context

programFiles

programFiles

e After synchronization

= DirectoryTree Session
ZAPI Client Context | =Session Context

programFiles programFiles

Objects References

After synchronization, in the example above, it is necessary to ensure that the variables
"programFiles" and “winamp” have their references updated, so they do not reference
the state prior to synchronization.

28

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();
transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);
manager.updateElement (programFiles);

/*

* Still false at this point, despite the update. It is necessary to update the
* programFiles and winamp references.

*/

manager.containsElement(programFiles, winamp);

winamp = manager.getElementById(winampId);
programFiles = manager.getElementById(programFilesId);

//Now it is true.
manager.containsElement(programFiles, winamp);

The API client also needs to be especially careful with the immediate return of methods:

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();
transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);
manager.updateElement (programFiles);

/*
* Still false because it invokes the containsElement(Object, Object)
* method instead of containsElement(Element, Element).
*/
manager.containsElement (manager.getElementById(programFilesId),
manager.getElementById(winampId));

In the example above, the API client intended to invoke the cut(Element, Element)
method but instead invoked cut(Object, Object). This is another overload of the cut()
method that accepts Object parameters instead of Element, representing the elements’
@Id.

This occurs because the getElementByld() method returns immediately within the
containsElement() method. Since the HappyTree API relies on Java reflection, the JVM
associates the return value directly with an Object instance at runtime.

29

Therefore, it is recommended to assign the return value of the method to a variable
rather than using an immediate return.

Phases

Now that the concept of contexts in the HappyTree APl has been explained, it is much
easier to identify the execution phases. The following description applies equally to a
new tree created from scratch or to a tree built through the API Transformation Process,
as these phases are considered only after the session has been initialized.

There are three stages of execution. These stages have no direct impact on APl usage
and serve purely as an informational aid to facilitate understanding of the lifecycle of
Element objects within sessions.

Phase Method Description

Initial Phase getElementById() Occurs when the API client retrieves an

search() element. The returned element has not
yet undergone any changes made by
the API client.

Usage Phase szzﬁ‘?i}j‘z";e"t() Occurs when the API client applies
gddchildren() changes to the element state returned
apply() from the previous phase.
setId()
setParent()
removeChild()
removeChildren()
wrap()

Synchronization Phase | persistElement() For the changes made in the previous
updateElement ()

phase to take effect, they must be
synchronized with the tree session using
the indicated methods. After
synchronization, both contexts are
aligned.

Element Lifecycle

The concepts of contexts and phases are presented here to provide a better
understanding of the lifecycle of elements in the HappyTree API. Contexts depend on the
element lifecycle to determine whether an element is synchronized with the actual tree,
while the element lifecycle itself depends on the phase—specifically, the Usage Phase—
for the HappyTree API to later determine whether the element was modified.

By using one of the methods specified in the Usage Phase (as described in the table
above), the element changes its state. Consequently, when a method from the
Synchronization Phase is invoked, the HappyTree API can detect that the element has
been modified.

30

When an element is obtained from a tree session, the API client receives an ATTACHED
element. This element represents an exact and faithful copy of the element—and all its
descendants—relative to the session context, that is, the API client’s own tree.

When the API client modifies the obtained element, the copy that was previously
identical to the element in the session context no longer remains synchronized. This state
is referred to as DETACHED, since the element is no longer synchronized with the tree.

Finally, when the API client determines that the element is no longer useful to the
current tree, the element may be removed. When an element is removed from the tree
within the context of a tree session, it is said to be in the NOT_EXISTED state. Similarly,
when an element is created from scratch using
“manager.createElement(objectId, objectParentId, object)”, the API client creates an
element that does not yet belong to the tree, and its state is therefore NOT_EXISTED.

It is important to note that all the explanations above apply only from the element’s
perspective. When using a writer method from the TreeManager interface, the
modification is applied automatically, provided that all elements passed as parameters
are in the ATTACHED state.

Thus, the lifecycle repeats itself from the moment an element is created or retrieved,
until its eventual removal.

ATTACHED

updateElement()

removeElement()

createElement()
| MOT_EXISTED

Hl)

DETACHED

ANY CHAMGES

persistElement() ATTACHED
getElementByld()

Sessions

The TreeSession interface is intended to represent a tree of elements. When referring to
either the session or the tree, both concepts share the same meaning, since a session
object contains the entire tree structure within it.

As mentioned at the beginning of this documentation, a transaction can operate on only
one session at a time. To select the tree to work with, the API client must invoke the

31

"transaction.sessionCheckout(sessionIdentifier)" method. AIternativer, new sessions
can be created by invoking either:

e transaction.initializeSession("MyFirstHappyTree", Menu.class)
e transaction.initializeSession("My Tree Session ID", myObjects)

This depends on the creation approach (from scratch or via the API Transformation
Process, respectively).

Session State

The API client must ensure that the session it intends to handle is active; otherwise, a
TreeException will be thrown. This validation is performed in almost all methods of the
TreeManager object.

Basically, there are only three possible states for a session:

e Activated
The session exists in memory and is enabled to be handled.

e Deactivated
The session exists in memory but is not enabled to be handled. When a
session is deactivated, the API client cannot manipulate the tree through
TreeManager methods.

e Destroyed
The session no longer exists in memory. In this case, the reference to the
session object is null.

State Exists? Can it be handled?
Activated v v
Deactivated v X
Destroyed X X

Session Initialization

The only way to create new sessions (new trees) is through the interface specifically
responsible for session management, which is the TreeTransaction interface.

As mentioned, several times throughout this documentation, there are two ways to
initialize (create) a session:

e From scratch

In this approach, the API client creates a tree manually by creating each
element individually and persisting them one by one.

It is important to note that, in this case, the API client is responsible for
providing all the information required to build each element, including:

32

* The element identifier.

= The parent element identifier.

= the object to be encapsulated within the element itself (wrapped
object node).

e From API Transformation Process

In this approach, the API client already has a pre-existing collection of
objects annotated with @Tree, @Id, and @Parent, allowing these objects
to be automatically arranged into a tree structure.

In this case, all element information is assigned automatically during the
API Transformation Process, including:

= The element identifier.
= The parent element identifier
= The wrapped object node.

In both approaches, two parameters are mandatory when starting a new session:
e Session Identifier

A string representing the session name. This parameter is required, and
no other session may exist with the same name, including deactivated
sessions.

e Session Type

This parameter indicates the node class type of the tree (e.g., categories,
directories, classifications, etc.).

When initializing a session from scratch, the class type is passed explicitly,
as shown in the example above ("Menu. cLass").

When initializing a session using the API Transformation Process, this
type is implicitly defined by the collection passed as a parameter. As a
result, each wrapped object node in the collection is automatically
encapsulated within its corresponding element.

After initialization, the transaction automatically references the newly created session,
regardless of whether the transaction was referencing a different session before the
initialization process.

Multiple Session Management

When a transaction manages multiple sessions of the same or different types, the
HappyTree APl supports relocating elements between sessions through the
TreeManager interface.

To perform this operation, it is important to understand certain aspects of session types,
as well as the distinction between an element identifier and a session identifier:

33

A session cannot have the same identifier as another session managed by the
transaction, regardless of the session type.

An element cannot share the same identifier value with another element within
the same tree (i.e., the same session).

An element may share the same identifier value with an element in a different
tree, regardless of the type of that tree.

With these concepts in mind, when relocating an element to another tree—either by
copying or moving it—using the methods respectively:

manager. copy(sourceElement, targetElement)
manager.cut(sourceElement, targetElement)

A TreeException will be thrown under the following conditions:

The API client has not selected any session (active).

The current session to which the “sourceElement” belongs, or the session to
which the “targetElement” belongs, is not active.

The “sourceElement” does not belong to the current session referenced by the
transaction. This occurs when the current session differs from the session of the
“sourceElement”.

The “sourceElement” is a root element.

The “sourceElement”, the “targetElement”, or at least one of their child elements
isin a DETACHED or NOT_EXISTED lifecycle state.

The session containing the “targetElement” already has an element with the
same @Id value as the “sourceElement”.

The session containing the “targetElement” has a different type from the session
to which the “sourceElement” belongs.

Cloning Session

The HappyTree API provides built-in support for cloning trees. With a single method
invocation, an entire tree can be cloned, with all its elements preserving the information
from the original tree.

To clone a tree, the API client must invoke the “transaction.cloneSession(from,to)”
method, where “from” can be either a TreeSession instance or a String representing the
identifier of the source session, and “to” is a String representing the identifier of the
newly cloned session.

Note: If a session already exists with the same identifier as the “to” parameter, this
method will overwrite the existing tree, resulting in the complete loss of any previously

34

stored information. It is the developer’s responsibility to verify that the target session
identifier is not already in use before invoking this method.

Specifications & Validations

The HappyTree API performs a series of validations to prevent inconsistencies that
violate its specifications. These validations occur in two situations: during the API
Transformation Process, and when invoking methods of the TreeManager interface after
the tree has been built.

The HappyTree APl may throw exceptions of two types: TreeException and
IllegalArgumentException.

TreeException is an exception class specific to the HappyTree APl and is thrown
whenever an API specification is violated.

IllegalArgumentException is a runtime exception native to Java. Within the context of the
HappyTree API, this exception is thrown when input parameters are null.

Specification Message Type
The input parameters must | Invalid null/empty lllegalArgumentException
not be null. argument(s).
The session identifier must | Duplicate session identifier. TreeException
be unique.
The class of the object to No @Tree annotation found. TreeException

be transformed must be
annotated with @Tree.
The identifier of the object | No @Id annotation found. TreeException
to be transformed must be
annotated with @Id.

The parent identifier of the | No @Parent annotation TreeException
object to be transformed found.
must be annotated with

@Parent.

The class of the object to Unable to transform input TreeException

be transformed must have | objects. Ensure the presence

a default constructor, of a default constructor,

getters, and setters. getters, and setters.

The value of the @Id Invalid null/empty lllegalArgumentException
attribute must not be null. | argument(s).

The value of the @Id Duplicate ID. TreeException

attribute must be unique
within the same tree
session.

The @Id and @Parent ID type mismatch error. TreeException
attributes must be of the

35

same type.

The wrapped object node
does not implement the
Serializable interface.

The wrapped object must
implement Serializable.

TreeException

Specification Message Type
The input parameters must | Invalid null/empty lllegalArgumentException
not be null. argument(s).

When invoking an
operation that directly
handles elements in the
tree. The transaction must
refer to a defined session.

No defined session.

TreeException

When invoking an
operation that directly
handles elements in the
tree, the transaction must
refer to an active session.

No active session.

TreeException

When handling an element,
ensure that the associated
transaction references the
session to which the
element belongs.

Element not defined in this
session.

TreeException

When copying or moving
an element from one tree
to another, both trees must
have the same type of
object that the element
wraps.

Type mismatch error:
incompatible parameterized
tree type.

TreeException

It is not possible to
perform operations on
elements that represent
the root of a tree.

The root of the tree cannot
be handled for this
operation.

TreeException

Operations that change the
state of the tree can only
be performed depending
on the lifecycle of the
elements involved in these
operations.

e |tis not possible to
copy/cut/remove
elements. Invalid
lifecycle state.

e |t is not possible
to persist the
element. Invalid
lifecycle state.

e |t is not possible

TreeException

36

to update the
element. Invalid
lifecycle state.

Duplicate ID elements are
not allowed within the
same tree.

Duplicate ID.

TreeException

When attempting to cut an
element by its @Id, the
operation fails if the

It is not possible to cut the
element. Source element
not found.

TreeException

element does not exist.

API Transformation Process

As mentioned earlier, this mechanism is responsible for transforming a linear structure
of Java model objects that logically exhibit tree-like behavior but are not structurally
represented as such.

The expression “having a tree behavior even though it is not structurally represented as
one” refers to a collection of objects that are logically related to one another, where one
object is the child of another, but where these relationships are not expressed through
structural containment.

This mechanism therefore transforms the linear structure so that objects become
structurally nested within one another. As a result, an object may contain a list of child
objects, each of which may, in turn, contain its own list of children, and so on.

As previously discussed, there are two ways to initialize a session. One of them involves
passing a collection of objects to be transformed, which triggers the APl Transformation
Process. Let us now review this process in more detail.

Creating a new tree from scratch

In this case, no API Transformation Process is involved. The API client simply initializes a
standard new tree session to be handled afterward. As a result, the tree initially contains
only the root element.

The method used to initialize a standard tree session is
Transaction.initializeSession(String, Class), where the String parameter represents the
session identifier (which must be unique and not null), and the Class parameter
represents the parameterized type of the tree. This type is used by the Element interface
to wrap the object that represents a node in the tree.

37

Creating a new tree using the API

The API client has a structure that represents a tree, but it is designed in a linear form,
through the TreeNode example class as shown below:

TreeNode
D
Parent

TreeNode
]
Parent

TreeNode

This structure is then transformed into:

= LINEAR STRUCTURE OF A TREE El REAL TREE STRUCTURE
Grandchild Child Parent e e
Parent Element -
Element Element Element AP .
g = TRANSFORMATION - Child Element 9

Grandchild Element \

/D / D / D O\ PROCESS b \
f { | I.. .-|| =| — 'l
PARENT D~ PARENT ID | PARENTID | :D | @ J

The version of the method to initialize a tree session through APl Transformation
Process is Transaction.initializeSession(String, Collection) where String is the session
identifier (unique and not null) and Collection represents the list of objects to be
transformed by the API Transformation Process.

This collection contains objects that their class is annotated by @Tree, @Id and @Parent
and consequently represents the parameterized type of the tree. During the
transformation process (APl Transformation Process lifecycle), these objects will be
automatically wrapped within their respective elements in the current tree session, thus
representing nodes in the tree. To unwrap the respective object from an element, simply
invoke Element.unwrap().

Note that the original object is now encapsulated within an Element. Therefore, when
the API client wants to retrieve the object corresponding to a specific position in the
tree, it must first locate the corresponding element (for example, by using
Element.getElementByld(Object)) and then extract the object by invoking
Element.unwrap().

When extracting the wrapped object node using Element.unwrap(), the HappyTree API
always returns a copy of the original object. If the API client needs to modify any property
of this object, it must invoke Element.wrap(TreeNode) to re-wrap the modified object

38

and then call TreeManager.updateElement(Element) to synchronize and apply the
change.

{1

= API Client Context Session Context

i / _Element | Element

wrap() ‘
x prosray
unwrap() \@M/e f @

Actor
Element

ATP Lifecycle

The API Transformation Process has an internal lifecycle composed of distinct phases
that aim to transform a linear structure of objects—which logically represent a tree data
structure—into an actual tree.

This lifecycle has no functional impact on how the API client uses the API Transformation
Process. The explanation provided here is purely informational and is intended to help
users better understand how a tree is assembled from a legacy linear structure of objects
that logically represent hierarchical relationships.

As input, the API Transformation Process receives a collection of objects that will be
transformed into a tree through five distinct and consecutive phases:

PRE-VALIDATION

API
TRANFORMATION
PROCESS
LIFECYCLE

INITIALIZATION

1. Pre-Validation

This phase performs a set of validations to verify whether the received input complies
with the adopted specifications. An lllegalArgumentException may be thrown if the list

39

of objects to be transformed is null or empty, while a TreeException is thrown when any
other specification is violated.

The following validations are performed:
o Verifies that the list of objects to be transformed is not null or empty.
o Verifies whether a session with the same identifier already exists.
e Verifies that the class of the objects to be transformed is annotated with @Tree.
e Verifies that the class of the objects to be transformed is annotated with @Id.

e \Verifies that the class of the objects to be transformed is annotated with
@Parent.

e Verifies that the @Id and @Parent attributes have the same type.
o Verifies whether the class of the objects implements Serializable.
o Verifies whether any object has a null value for the @Id attribute.
e Checks for duplicate @Id values.

e Verifies that the class of the objects to be transformed provides valid getters and
setters.

2. Extraction

If the input list of objects passes all validations from the previous phase, the HappyTree
API proceeds to extract the objects to separate them from their respective parent
references. As a result, the output of this phase consists of two distinct groups: the
source objects and their corresponding parent references.

3. Initialization

In this phase, the HappyTree API instantiates an Element object for each source object
provided as input. The values of the @Id and @Parent attributes from the source object
are assigned to the corresponding element.

In addition, the source object itself is automatically wrapped within the element, making
it eligible to represent a node in the tree, since an Element naturally represents a node
in the context of the HappyTree API.

After the tree has been built, the original source object can be retrieved by invoking the
Element.unwrap() method.

As a result of this phase, all elements are instantiated and contain the complete
information derived from the source objects.

40

4. Binding

After obtaining the list of elements from the previous phase, the HappyTree API binds
each element to its respective parent using the parent information extracted during the
Extraction phase.

This is the phase in which the tree is actually assembled. For each node in the tree, there
is a corresponding Element object, where each element contains:

The value of the @Id attribute.
The value of the @Parent attribute.

The wrapped object node corresponding to the source object transformed
during the process.

A collection of child elements representing its direct descendants.

The tree session to which the element belongs.

41

